CLEP College Algebra
Practice Test

Time—90 Minutes
60 Questions

For each question below, choose the best answer from the choices given.

1. \((3x + 5)^2 =\)
 (A) \(9x^2 + 30x + 25\)
 (B) \(9x^2 + 15x + 25\)
 (C) \(9x^2 + 15\)
 (D) \(9x^2 + 25\)
 (E) \(3x^2 + 25\)

2. Which of the following is a factor of \(16 – (3x + 2)^2?\)
 (A) \(16 – 3x + 2\)
 (B) \(4 + 3x – 2\)
 (C) \(4 + (3x + 2)\)
 (D) \(-(3x + 2)^2\)
 (E) \(3x + 2\)

3. \(4r(2r^2 – 6) – (5r^3 – 12 + 10r) + 8 =\)
 (A) \(3r^3 + 34r + 20\)
 (B) \(3r^3 + 34r – 20\)
 (C) \(3r^3 – 34r + 20\)
 (D) \(3r^3 – 34r – 20\)
 (E) \(13r^3 + 34r + 20\)

4. If \(a + b = 4,\) what is the value of \(|4 – a| + |4 – b|?\)
 (A) \(-4\)
 (B) \(0\)
 (C) \(4\)
 (D) \(8\)
 (E) It cannot be determined from the given information.

5. \(\frac{x^2 - 16}{x+5} \)
 (A) \(\frac{1}{(x+5)(x-5)}\)
 (B) \(\frac{(x-4)(x-5)}{x+5}\)
 (C) \(\frac{(x+4)(x-5)}{x+5}\)
 (D) \(\frac{x^2 - x - 20}{x+5}\)
 (E) \(\frac{x+5}{x-5}\)

6. Which of the following is a factor of \(8x^2 – 2x – 28?\)
 (A) \(4x + 7\)
 (B) \(4x – 4\)
 (C) \(4x + 2\)
 (D) \(2x – 7\)
 (E) \(x + 2\)

7. Of the following, which is greatest?
 (A) \(4e^2\)
 (B) \((4e)^3\)
 (C) \((2e)^3\)
 (D) \(2^{4e}\)
 (E) \((3e)^2\)
8. For every positive integer x, \[\frac{x!}{(x-1)!} + x = \]

(A) -1

(B) 0

(C) $x - 1$

(D) x

(E) $2x$

9. Which of the following is equal to $a^\frac{3}{10} b^\frac{1}{5} (\frac{a}{b})^\frac{3}{5}$?

(A) $-b^\frac{12}{5} a^\frac{7}{5}$

(B) $\frac{b^{\frac{10}{5}}}{a^{\frac{7}{5}}}$

(C) $\frac{a^{\frac{9}{10}}}{b^{\frac{7}{5}}}$

(D) $\frac{b^7}{a}$

(E) $\frac{1}{a^{\frac{5}{10}} b^{\frac{3}{5}}}$

10. Millie drops a tennis ball out a window that is h feet high. The tennis ball hits the ground and bounces several times. The height of each bounce is $\frac{3}{5}$ the height of the previous bounce. For example, after the first bounce, the ball bounces to a height of $\frac{3}{5} h$ feet. Which of the following represents the total number of feet the ball travels between the first and eighth bounce?

(A) \[\sum_{i=1}^{\infty} \frac{3}{5} h^i \]

(B) \[\sum_{i=1}^{7} \left(\frac{3}{5} h^i \right) \]

(C) \[\sum_{i=1}^{8} \left(\frac{3}{5} h^i \right) \]

(D) \[\sum_{i=1}^{8} \left(\frac{3}{5} h^{i+1} \right) \]

(E) \[\sum_{i=1}^{10} \left(\frac{3}{5} h^{i+1} \right) \]
11. Which of the lines in the figure above is the graph of \(y = -5 \)?

(A) \(a \)
(B) \(b \)
(C) \(c \)
(D) \(d \)
(E) \(e \)

12. Which of the following gives all values of \(p \) for which \(|p + 8| \geq 12|)?

(A) \(\{p \mid p \geq 12\} \)
(B) \(\{p \mid 4 \leq p \leq 20\} \)
(C) \(\{p \mid -12 \leq p \leq 12\} \)
(D) \(\{p \mid -20 \leq p \leq 4\} \)
(E) \(\{p \mid p \leq -20 \text{ or } p \geq 4\} \)

13. Which of the following are the solutions of the equation \(3x^2 - x = x - 16 \)?

(A) \(x = 3 \) and \(x = 16 \)
(B) \(x = 16 \) and \(x = -8 \)
(C) \(\frac{2 + 2\sqrt{47}}{6} \) and \(\frac{2 - 2\sqrt{47}}{6} \)
(D) \(\frac{-2 + 2\sqrt{47}}{3} \) and \(\frac{-2 - 2\sqrt{47}}{3} \)
(E) \(\frac{2 + 2\sqrt{47}}{6} \) and \(\frac{2 - 2\sqrt{47}}{6} \)

14. The shaded region in the figure above represents the intersection of the graphs of \(y \geq x \), \(x \geq 1 \), and which of the following inequalities?

(A) \(y \leq 2x + 3 \)
(B) \(y \geq 2x + 3 \)
(C) \(y \leq 2x - 3 \)
(D) \(y \geq 4x - 3 \)
(E) \(y \geq 4x + 3 \)
15. The figure above shows the graph of the line with equation $ax - by = 1$. Which of the following must be true?

(A) $a = 1$ and $b < 0$
(B) $a < 0$ and $b = 0$
(C) $a < 0$ and $b < 0$
(D) $a < 0$ and $b > 0$
(E) $a > 0$ and $b < 0$

16. The set of all values for b for which the equation $5x^2 + bx + 5 = 0$ has either one or two real roots is defined by

(A) $b < 10$
(B) $b > 10$
(C) $b \leq -5$ or $b \geq 5$
(D) $b \leq -10$ or $b \geq 10$
(E) $b < -10$ or $b > 10$

17. Which quadrants of the xy-plane contain points of the graph of $5x + y < 6$?

(A) II and IV only
(B) I, II, and IV only
(C) II, III, and IV only
(D) I, II, and III only
(E) I, II, III, and IV

18. Janna opens a bank account with $5,000 and makes no additional deposits or withdrawals. During the same week, her friend Emily spends $15,000 on a new car. At the end of each year, $250 is added to Janna’s account, while the value of Emily’s car decreases by $500 each year. Which of the following systems of equations could be used to find the number of years, y, that it will take for the values of Janna’s bank account (v_1) and Emily’s car (v_2) to be equal?

(A) $v_1 = 5,000 + y$ and $v_2 = 15,000 - y$
(B) $v_1 = 5,000y + 250$ and $v_2 = 15,000y - 500$
(C) $v_1 = 5,000 + 250y$ and $v_2 = 15,000 - 500y$
(D) $v_1 = 5,000 + 500y$ and $v_2 = 15,000 - 250y$
(E) $v_1 = 5,000 - 250y$ and $v_2 = 15,000 + 500y$

19. If $A = \{50, 65\}$, $B = \{45, 50, 60, 75\}$, and $C = \{30, 40, 50, 60, 70\}$, then $(A \cup B) \cap C$

(A) the empty set
(B) $\{50\}$
(C) $\{60\}$
(D) $\{50, 60\}$
(E) $\{45, 50, 60, 65, 70\}$

20. Which of the following numbers are not rational?

I. i
II. $\sqrt{2}$
III. $\frac{3}{4}$

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III
21. When \(\frac{2 - 6i}{2 - i} \) is expressed in the form \(a + bi \), then what is the value of \(b \)?

22. If \(l > m > 0 > n \), then each of the following must be true EXCEPT

(A) \(ln < lm \)
(B) \(lm > mn \)
(C) \(ln < m^2 < lm \)
(D) \(l^4 > m^4 > n^4 \)
(E) \(\sqrt{l} > \sqrt{m} \)

23. \((\sqrt{3}i)^5 = \)

(A) \(-9\sqrt{3}\)
(B) \(9\sqrt{3}i\)
(C) \(27i\)
(D) \(9\)
(E) \(-\sqrt{3}i\)

24. What are all real values of \(y \) for which

\[
\frac{5}{y + 7} = \frac{1}{5} + \frac{y}{10}
\]

(A) \(y = -12 \)
(B) \(y = 3 \) and \(y = -3 \)
(C) \(y = 3 \) and \(y = -12 \)
(D) \(y = 12 \) and \(y = -12 \)
(E) There are no real solutions.

25. What is the 20th term of the arithmetic sequence \(3x, 3x + 2, 3x + 4, \ldots \)?

(A) \(x + 38 \)
(B) \(3x + 38 \)
(C) \(3x + 40 \)
(D) \(3x + 42 \)
(E) \(114 \)

26. The table above gives some of the values of a fifth degree polynomial \(p(r) \). Based on the values shown, what is the minimum number of real roots of the equation \(p(r) = 0 \)?

(A) Five
(B) Four
(C) Three
(D) Two
(E) One

27. Monica drew a pattern with rows of triangles. The last row had 35 triangles. The row above it had 33 triangles, and each row above had 2 fewer triangles than the row just below it. There is 1 triangle in the top row. How many triangles are in the pattern in all?
28. What is the middle term in the expansion of \(\left(\frac{x}{3} + 2x \right)^6 \)?

(A) \(\frac{20}{27} \)

(B) \(\frac{160}{27} \)

(C) \(\frac{20x^5}{27} \)

(D) \(\frac{160x^4}{27} \)

(E) \(\frac{80x^5}{3} \)

29. If \(x = 5 \) is a solution to the equation \(2x^3 - ax^2 + 4x - 20 = 0 \), what is the value of \(a \)?

30. The first three terms of a geometric sequence are \(\frac{1}{5}, -\frac{1}{15}, \) and \(\frac{1}{45} \). Which of the following represents the \(n \)th term of the sequence?

(A) \(\frac{(-1)^{n-1}}{5(3)^{n-2}} \)

(B) \(\frac{(-1)^n}{5(3)^n} \)

(C) \(\frac{(-1)^{n+1}}{15^{n-1}} \)

(D) \(\frac{(-1)^{n+1}}{15^{n-1}} \)

(E) \(\frac{(-1)^n}{5(3)^{n-2}} \)

31. If the remainder is 19 when \(x^3 - 2x^2 + lx - 8 \) is divided by \(x - 3 \), then \(l = \)

(A) 0

(B) 3

(C) 5

(D) 6

(E) 9

32. The figure above shows the graph of the function \(f \). What is the value of \(f(f(0)) \)?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

33. In the \(xy \)-plane, what is the \(x \)-intercept of the graph of \(y = \frac{3}{5}x - 15 \)?
34. Which of the following define \(y \) as a function of \(x \)?

I.

II. \(6x^2 + 4y = 15 \)

III.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>8</td>
</tr>
<tr>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>-7</td>
</tr>
</tbody>
</table>

(A) None
(B) I only
(C) I and II only
(D) II and III only
(E) I, II, and III

35. If \(5^{2+p} = 25^p \), then \(p = \)

36. Which of the following could be the graph of \(y = x^2 + 8x + 12 \)?

(A)
(B)
(C)
(D)
(E)
37. If \(f(x) = 4x - 3 \) and \(g(x) = 3x + 3 \), then \(f(g(x)) = \)
(A) \(12x^2 + 3x - 9 \)
(B) \(12x + 9 \)
(C) \(12x + 15 \)
(D) \(x + 3 \)
(E) \(7x \)

38. If \(\log_2(x - 6) = 5 \), then what is the value of \(x \)?
(A) 25
(B) 31
(C) 38
(D) 41
(E) 59

39. For a science experiment, Ajay starts with 8 milliliters of a solution at 9:00 A.M. Every 20 minutes, he doubles the amount of solution. Assuming no solution evaporates, how many milliliters of solution will there be at 11:00 A.M.?
(A) 256
(B) 512
(C) 1,024
(D) 2,048
(E) 4,096

40. Which of the following must be true?
 I. \(\ln 12.5^x = x \ln 12.5 \)
 II. \(\log_p(p^r) = x \log_p p + \log_p r \)
 III. \(\log_x 4^x = 4^x \)
 (A) I only
 (B) II only
 (C) I and II only
 (D) II and III only
 (E) I, II, and III

41. If \(f(x) = 8 + 3x^2 \), and \(f^{-1} \) represents the inverse function of \(f \), then \(f^{-1}(x) = \)
(A) \(3 + 8x^2 \)
(B) \(\frac{1}{8 + 3x^2} \)
(C) \(\sqrt{\frac{8-x}{3}} \)
(D) \(\sqrt{\frac{x-8}{3}} \)
(E) \(\sqrt{\frac{x-8}{3}} \)

42. \(\frac{3x - 2}{x + 4} - \frac{x - 5}{3x + 2} \)
(A) \(\frac{8x^2 - 6x - 24}{(x + 4)(3x + 2)} \)
(B) \(\frac{8x^2 + x + 16}{(x + 4)(3x + 2)} \)
(C) \(\frac{2x - 7}{(x + 4)(3x + 2)} \)
(D) \(\frac{x + 5}{(x + 4)(3x + 2)} \)
(E) \(\frac{2x + 3}{-2x - 2} \)
43. The graph of the function \(y = f(x) \) is shown in the preceding diagram. Which of the following is the graph of \(y = f(x - 2) + 2 \)?

(A) ![Graph A]

(B) ![Graph B]

(C) ![Graph C]

(D) ![Graph D]

(E) ![Graph E]

44. \((i - 4)(2 + i) + (3i - 6) = \)

(A) \(-15 + i\)

(B) \(-14 + i\)

(C) \(-12 + i\)

(D) \(-21\)

(E) \(-3\)

45. \(f \) is an exponential function defined by \(f(x) = mn^x \), where \(m \) and \(n \) are positive constants. If \(f(4) = 162 \) and \(f(3) = 54 \), what is the value of \(m \)?

46. Which of the following will result in a perfect square for all integer values of \(x \), when added to \(9x^2 + 16 \)?

(A) \(36x\)

(B) \(24x\)

(C) \(16x\)

(D) \(12x\)

(E) \(0\)

\[x + y = 2 \]
\[x^2 + y^2 = 52 \]

47. For what values of \(x \) will \((x, y)\) be a solution to the above system of equations?

(A) The system has no solutions.

(B) \(x = -6 \) and \(x = 4 \)

(C) \(x = 6 \) and \(x = -4 \)

(D) \(x = 2 \) and \(x = 2 \)

(E) \(x = 7 \) and \(x = \sqrt{3} \)
48. Which of the points in the above figure represents the complex number $-1 + 4i$?

(A) A
(B) B
(C) C
(D) D
(E) E

49. What is the ending value of an investment if $7,000 is invested at 3% compounded monthly for 4 years? Round your answer to the nearest dollar.

50. For the function $f(x) = \log_5 x$, which of the following must be true?

I. $f(x)$ decreases with decreasing values of x
II. The domain is $(-\infty, 0)$
III. The range is $(-\infty, \infty)$

(A) I only
(B) I and II only
(C) II and III only
(D) I and III only
(E) I, II, and III

51. $3x(4x^2 + 2) - (8 - 2x^3 + 10x) - 4 = $

(A) $10x^3 - 4x - 4$
(B) $14x^3 + 4x + 4$
(C) $14x^3 - 4x + 12$
(D) $14x^3 - 4x - 12$
(E) $14x^3 + 16x - 12$

52. If $A = \left\{ \frac{1}{4}, \frac{2}{5} \right\}$, $B = \left\{ \frac{1}{4}, \frac{3}{5}, \frac{4}{7} \right\}$, and $C = \left\{ \frac{1}{2}, \frac{1}{4}, \frac{3}{4} \right\}$, then $(A \cup B) \cap C$ is

(A) $\left\{ \frac{1}{4} \right\}$
(B) $\left\{ \frac{1}{2} \right\}$
(C) $\left\{ \frac{1}{2}, \frac{3}{4} \right\}$
(D) $\left\{ \frac{1}{4}, \frac{3}{5}, \frac{4}{7} \right\}$
(E) the empty set

53. Which of the following numbers are rational?

I. $\sqrt{5}$
II. π
III. $6.8989…$

(A) I only
(B) III only
(C) I and III only
(D) II and III only
(E) I, II, and III
54. The first three terms of a geometric sequence are 15, 7.5, and 3.75. Which of the following represents the nth term of the sequence?

(A) $15(2^{n-1})$
(B) $15(0.5^{n-1})$
(C) $\frac{15}{0.5^{n-1}}$
(D) $15(-0.5^{n-1})$
(E) $\frac{-15}{2^{n-1}}$

55. If $a + 5 = b$, what is the value of $|a - b| - |b - a|$?

(A) -10
(B) -5
(C) 0
(D) 5
(E) It cannot be determined from the given information.

56. Which of the points in the preceding figure represents the complex number $-3 - 2i$?

(A) A
(B) B
(C) C
(D) D
(E) E

57. The first three terms in an arithmetic sequence are $\frac{x}{2} + 5$, $\frac{x}{2} + 12$, and $\frac{x}{2} + 19$. What is the 15th term in the sequence?

(A) $x + 50$
(B) $\frac{x}{2} + 96$
(C) $\frac{x}{2} + 98$
(D) $\frac{x}{2} + 103$
(E) $\frac{x}{2} + 110$
58. The table above gives some values of a 5th degree polynomial \(f(x) \). Based on the values in the table, what is the minimum number of real roots of the equation \(f(x) = 0 \)?

(A) Five
(B) Four
(C) Three
(D) Two
(E) One

59. Which of the following numbers are real?

I. \(i^2 \)
II. \(\sqrt{i} \)
III. \(2i \)

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

60. \(-5b(b^2 + 2b) - (4 + 3b^3 - 6b) + 7 =

(A) \(-8b^3 - 10b^2 + 6b + 3\)
(B) \(8b^3 + 10b^2 - 6b - 3\)
(C) \(-8b^3 - 10b^2 + 3\)
(D) \(2b^3 - 10b^2 + 6b + 3\)
(E) \(2b^3 - 10b^2 + 3\)